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Introduction

Solid-state fermentation (SSF) has been re-
searched and applied in the food industry for 
a long time and constitutes a feed material process-
ing technique. An important objective of SSF is 
the production of enzymes, organic acids and other 
metabolites of economic importance. It was indi-
cated that the utilization value of some substrates 
was increased by post-fermentation by probiotics 
(Chu et al., 2017; Chuang et al., 2019). Recently, 
SSF has been employed to enhance nutrient bio-
availability, inhibit gut pathogenic bacteria and re-
duce anti-nutritional factors content in plant protein 
sources, resulting in improved nutrient digestibil-
ity, thereby improving performance and gut health 
of domestic animals (Olukomaiya et al., 2019). In 
the fermentation process, the utilization efficiency 

of microorganisms on the macromolecular mate-
rial in feed can be improved by using enzymatic 
co-fermentation. For example, the monosaccharide 
produced by cellulase hydrolysis of crude fibre can 
provide energy for probiotics to synthesize microbe 
protein (Ghosh et al., 2019). Simultaneously, co-
fermentation can also overcome the challenge of 
less enzyme production by microbial fermentation 
alone, and improve feed quality. This advantage is 
of great significance for the development and ap-
plication of feed sources (Bartkiene et al., 2018; 
Wang et al., 2019). So, the main purpose of this 
review is to summarize the SSF method in which 
enzyme and microbe are used simultaneously in 
feed processing and to evaluate their simultane-
ous effect on feed SSF. Moreover, the basis for the  
follow-up of the rational use of enzyme in feed 
SSF is provided.

ABSTRACT. Fermentation and enzymolysis are commonly used biological 
treatment methods to treat forage, especially unconventional one. Both these 
treatments can improve the nutritional value of the forage, reduce the content of 
anti-nutritional factors and ameliorate the digestibility of feed. Microbial-enzymatic 
synergism treatment constitutes an organic combination of fermentation and 
enzymolysis, which can strengthen the processing of forage and achieve  
a superior feeding effect. In this review, the objectives of microbial-enzymatic 
synergism treatment are summarized, including decomposing macromolecular 
nutrients,  decreasing  anti-nutritional  factors  and  increasing  specific  target 
products. The substrates, microbes and enzymes used in microbe-enzyme 
synergy are also summarized. Furthermore, the similarities and differences 
between one-step and two-step technological processes of synergy are 
presented and the current evaluation system of microbial-enzymatic synergism 
treatment is reviewed. Existing problems and future development directions of 
microbial-enzymatic synergism treatment are also discussed.
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Purpose of microbe and enzyme 
cooperation

At present, the cooperative treatment of feed 
and feed raw materials by microbe and enzyme is 
a necessary supplemental measure for microbially 
fermented feed or enzyme-treated feed. Its primary 
purpose is to fully degrade the substrate by combin-
ing enzyme and microbe to develop new feed re-
sources, improve the nutritional value of substrate 
feed, reduce anti-nutritional factors in substrate feed 
and enhance the flavour and palatability of feed 
(Bartkiene et al., 2018). For instance, the soyabean 
meal is a high-quality plant protein feed, but it con-
tains a variety of anti-nutritional factors limiting its 
nutritional value. However, the impact of antinutri-
tional factors can be decreased and the nutritional 
value can be improved by adding fibrolytic enzymes 
and lactic acid bacteria to the fermentation process 
(Cheng et al., 2019). By such treatments, the protein 
of soyabean meal can be degraded into numerous 
kinds of small peptides by fermentation, as well as 
the content of angiotensin-converting enzyme can 
be increased to ensure animal health (Wang et al., 
2017). After the co-fermentation and decomposition 
by Lactobacillus plantarum, Bacillus subtilis and 
Saccharomyces cerevisiae, soyabean meal can be 
widely used in piglet feeding without affecting the 
daily gain of piglets, but augmenting their immune 
ability and promoting the development of small in-
testinal epithelial cells (Zhu et al., 2017). Indeed, 
the effect of soyabean meal co-fermented by pro-
tease and probiotics was shown to be superior to 
single fermentation or enzymatic process in broilers 
(Cheng et al., 2019). It has also been reported that, 
from the perspective of nutrition, the proportion of 
nutrients, and especially amino acids proportion  
of some inexpensive and single protein feed mate-
rials, becomes balanced after the co-fermentation 
by B. subtilis, protease and pectinases (Goodarzi 
Boroojeni et al., 2017; 2018).

Another main purpose of microbe and enzyme 
synergism is to increase the yield of specific products 
and obtain a specific value of substrates (Dai et al., 
2017; Vong et al., 2018). The most common way 
to achieve this is to use protein raw materials as 
a substrate to produce various functional peptides 
and amino acids through the co-decomposition of 
macromolecular proteins by microbe and enzymes 
(Mukherjee et al., 2016; Dai et al., 2017; Reddy 
et al., 2017; Lee et al., 2019). The content of total 
phenols and flavonoids in soyabean meal and its 
by-products can be also significantly increased by 

the synergistic treatment of microbe and enzyme 
(Dai et al., 2017). As these substances have 
strong antioxidant properties, they can be used as 
a component in functional food for both humans 
and animals (Yang et al., 2019). In a study involving 
a gramineous crop, sweet sorghum was used as 
a substrate, and a large amount of butyric acid was 
obtained during its fermentation by Clostridium 
thermophilus after pretreatment with trypsin and 
organic acid (Wang et al., 2015a). In oil crops, 
the extraction of camphor seed oil was increased 
by synergizing of Bacillus amyloliquefaciens and 
proteinase after physical and chemical mutagenesis 
to stimulate strains and protease activity (Zeng 
et al., 2017). In the field of bioenergy, to obtain 
bioethanol the castor cake was fermented with 
S. cerevisiae in the synergism with the cellulase 
(CMCase) of Pseudomonas (Abada et al., 2019). 
Similarly, maize cob was fermented by Escherichia 
coli to obtain bioethanol after being hydrolyzed 
by hydrolase and saccharified by a saccharifying 
enzyme (Pedraza et al., 2016).

Substrates, microorganisms strains 
and enzymes

The substrates for fermentation characterized by 
microbe-enzyme synergism are primarily oil cake 
feedstuff, fibrous feedstuff, grain by-products and 
animal by-products (Wang et al., 2015b; Atuhaire 
et al., 2016; Chuang et al., 2019) (Table 1). 

The strains for microbial-enzymatic synergism 
in SSF are mainly animal probiotics, such as lactic 
acid microbes, Bacillus, yeasts and some moulds 
(Jazi et al., 2017; Yasar and Tosun, 2018). 

The enzymes used in the synergism of mi-
crobe and enzyme in feed processing were pri-
marily hydrolases, which specifically decompose 
substrates in the feed (Wang et al., 2017; Su et al., 
2018; Cheng et al., 2019). They are also requisite 
enzymes for animals to digest these substrates. 
Therefore, according to the summary of litera-
ture, the enzyme in synergism can play an impor-
tant role in the substrate of synergism, but also 
be an important source of digestive enzyme for  
animals.

All kinds of microbe may be used in the 
microbe-enzyme synergism of oil-cake feedstuff to 
enhance flavour, reduce anti-nutritional factors and 
improve digestibility (Shi et al., 2016; Odinot et al., 
2017; Ohara et al., 2018); however, the most of the 
collaborative enzymes are proteases which are used 
to decompose macromolecular proteins in oil-cake 
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feedstuff and improve digestibility or increase the 
content of specific functional peptides (Wang et al., 
2017; Su et al., 2018; Cheng et al., 2019). This 
is essentially the same process that occurs in the 
treatment of animal by-products (Bernardo et al., 
2019). 

In the collaborative treatment of fibre feedstuff 
and grain by-products, the used microbes are largely 

Bacillus, yeast and mould, which are employed to 
disturb fibre structure and release nutrients. The used 
enzymes are mostly non-starch polysaccharides 
enzymes, such as cellulase and hemicellulase. They 
can decompose macromolecular polysaccharides 
into monosaccharide, which are used by animals or 
provide energy for collaborative microorganisms 
(Xiong et al., 2016; Olukomaiya et al., 2019).

Table 1. Substrates, microorganisms and enzymes used in the synergistic microbial-enzymatic solid-state fermentation
Substrates Microorganisms Enzymes
Soyabean (Glycine max) meal Bacillus subtilis (Feng et al., 2007; Dai et al., 2017; 

Wang et al., 2017; Cheng et al., 2019; Salim et al., 
2019), Lactobacillus plantarum (Mukherjee et al., 2016; 
Wang et al., 2016; Zhu et al., 2017), Lactobacillus 
paracasei (Su et al., 2018), Pediococcus acidilactici 
(Wiseman et al., 2017), Saccharomyces cerevisiae 
(Zhu et al., 2017), Clostridium butyricum (Su et al., 
2018), Bacillus amyloliquefaciens (Yang et al., 2019), 
Aspergillus niger (Ohara et al., 2018)

protease (Wang et al., 2017; Su et al., 2018;  
Cheng et al., 2019; Yang et al., 2019), acid 
protease, neutral protease, alkaline protease, 
cellulase (Salim et al., 2019; Ohara et al., 2018), 
α-amylase (Salim et al., 2019), xylanase (Wiseman 
et al., 2017), β-glucosidase (Ohara et al., 2018)

Rapeseed (Brassica napus L.) 
meal

Saccharomyces cerevisiae (Chiang et al., 2010), 
Lactobacillus fermentum, Enterococcus faecium, 
Bacillus subtilis (Chiang et al., 2010), Aspergillus 
oryzae (Dossou et al., 2019), Aspergillus niger (Shi 
et al., 2016; Odinot et al., 2017; Tie et al., 2020)

endoglucanase, acid protease (Shi et al., 2016;  
Tie et al., 2020), feruloyl esterase (Odinot et al., 
2017), lignocellulosic hydrolyzing enzymes, 
phytase (Shi et al., 2016)

Cottonseed (Gossypium 
arboreum L.) meal

Bacillus subtilis, Aspergillus oryzae, Aspergillus niger 
(Jazi et al., 2017; Tang et al., 2018), Candida utilis 
(Xiong et al., 2016)

alcalase, flavourzyme (Tang et al., 2018), amylase, 
pectinase, cellulase, xylanase (Xiong et al., 2016; 
Olukomaiya et al., 2019) 

Wheat (Triticum aestivum L.) bran Saccharomyces cerevisiae, Aspergillus oryzae 
(Chuang et al., 2019), Trichoderma pseudokoningii 
(Chu et al., 2017)

phytase (Chuang et al., 2019), cellulase and 
xylanase (Chu et al., 2017)

Palm kernel (Trachycarpus 
fortunei) cake

Lactobacillus plantarum (Lee et al., 2019), 
Paenibacillus curdlanolyticus (Alshelmani et al., 2014)

hemicellulase (xylanase, mannanase), cellulase, 
proteolytic (endoprotease) (Lee et al., 2019; 
Olukomaiya et al., 2019)

Peas (Pisum sativum L.) Bacillus subtilis, Bacillus licheniformis (Goodarzi 
Boroojeni et al., 2017; 2018)

α-glucosidase,  protease, pectinase (Goodarzi 
Boroojeni et al., 2017; 2018)

Barley (Hordeum vulgare L.) Lactobacillus plantarum, Rhizopus oryzae (Wang 
et al., 2019), lacto-acid bacteria (Yasar and Tosun, 
2018)

glucoamylase (Wang et al., 2019), cellulose (Yasar 
and Tosun, 2018)

Grain (Olyza sativa L.) by-product Pediococcus acidilactici (Bartkiene et al., 2018) xylanase, cellulase, β-glucanase (Bartkiene et al., 
2018)

Potatoes (Solanum tuberosum L.) Lactobacillus plantarum (Du et al., 2018) cellulose (Du et al., 2018)

Maize (Zea mays L.) stalk Chaetomium, white-rot fungi, Lactobacillus plantarum 
(Atuhaire et al., 2016), Bacillus licheniformis (Alokika 
and Singh, 2019)

cellulase, xylanase (Alokika and Singh, 2019)

Maize (Zea mays L.) cob Bacillus subtilis (Jia et al., 2017), Bacillus licheniformis, 
Lactobacillus plantarum, Saccharomyces cerevisiae 
(Alokika and Singh, 2019)

xylanase (Alokika and Singh, 2019), cellulase, 
hydrolysis enzyme (Jia et al., 2017)

Alfalfa (Medicago sativa L.) Lactobacillus plantarum, Pediococcus pentosaceus 
(Chen et al., 2019), yeast, lacto-acid bacteria (Ding 
et al., 2013), Lactobacillus buchneri (Kung et al., 2003)

cellulase, hemicellulose (Chen et al., 2019), 
viscozyme (Schmidt et al., 2001), plant enzyme 
(Ding et al., 2013),  β-glucanase,  α-amylase, 
xylanase, and galactomannase (Kung et al., 2003)

Blood meal Bacillus subtilis (Wang et al., 2015b), Aspergillus niger, 
Aspergillus oryzae (Zheng et al., 2014)

hydrolase (Wang et al., 2015b)

Feather meal Aspergillus niger (de Oliveira et al., 2019), Bacillus 
(Bernardo et al., 2019)

protease (Bernardo et al., 2019), lipase, phytase, 
keratinase (de Oliveira et al., 2019)
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The technology of microbial-
enzymatic synergism

The synergism of microbe and enzyme in feed 
processing is often realized in the SSF because 
the amount of treated substrate is normally large 
(Moniruzzaman et al., 2018). At present, most of the 
technologies of synergism of microbe and enzyme in 
feed processing comprise one-step fermentation, i.e. 
simultaneous fermentation of substrate by bacteria 
in enzyme presence (Ohara et al., 2018; Salim et al., 
2019), as shown in Figure 1A. It is worth noting 
that great changes have occurred in the process 
parameters when using different strains and enzymes 
for collaborative treatment. These parameters 
include the fermentation mode (anaerobic, aerobic) 
for the synergism of microbe and enzyme, and the 
determination of certain physical parameters, such 
as temperature, water content, process duration, 
inoculation amount, enzyme addition amount and 
initial pH of synergistic treatment (de Brito et al., 
2017). Indeed, the appropriate parameters of 
fermentation markedly improve the treatment effect. 
In the determination of optimal process parameters, 
the research on the background of the synergistic 
relationship between microbe and enzyme is crucial. 
The parameters should fulfil the best conditions for 
the synergistic effect of microbe and enzymes. For 
example, Wang et al. (2015a) stated that to obtain 
a high yield of butyric acid from synergistically 
fermented sweet sorghum with pretreatment of 
Clostridium thermobutyricum and trypsin the 
temperature 50 °C should be used.

It has also been previously reported that sub-
strates can be fermented by a second fermentation 
or in a two-step collaborative process (Coban and 
Demirci, 2014). The general process is to create the 
optimal reaction conditions for one kind of microbe 
and enzymes in the initial step and create the optimal 
reaction conditions for another kind of microbe and 
enzymes in the second step. Such a process requires 
changing conditions at various stages to decompose 
the substrate (Figure 1B). Through these two steps, 
two sets of process parameters are used to complete 
the matrix treatment more thoroughly or obtain more 
sufficient target products (Coban and Demirci, 2014; 
Tie et al., 2020). Tie et al. (2020), however, reported 
that the two-step method of the synergistic effect of 
microbe and enzyme on rapeseed meal differs from 
that described above. Specifically, they found that the 
rapeseed meal was fermented in suitable conditions 
for the fermentation by Aspergillus niger, and then 
the rapeseed meal was treated by the endogenous 
enzyme produced by A. niger in the second fermen-
tation process. In addition, the temperature of the 
enzymolysis process was much higher than that of 
fermentation (45 °C and 30 °C, respectively), and the 
content of glucosinolates and phytic acid in the rape-
seed meal was greatly decreased and the content of 
small peptide was greatly increased by the two-step 
method (Tie et al., 2020).

These results demonstrate that the two-step 
process could be more effective for the degradation 
of anti-nutritional factors and the improvement of 
the nutritional value of feedstuff in comparison to 
the use of the SSF method alone (Tie et al., 2020).  

Figure 1. Process diagram of different solid-state fermentation methods with microbiological-enzymatical synergism: one-step fermentation (A) 
with stable parameters through the whole process and two-step fermentation (B) with changing process parameters. The dotted lines in different 
colours represent different process parameters.
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For specific fermentation products, the two-step 
collaborative treatment process can be used in ob-
taining more fermented products with higher purity. 
However, the fermentation process of the two-step 
collaborative treatment is complex and the param-
eters vary markedly, which imposes high require-
ments for production equipment and processing 
technology (Odinot et al., 2017). The one-way fer-
mentation process, on the other hand, is relatively 
simple and more pragmatic in feed preparation. As 
long as the living background and reaction con-
ditions for microbe and enzyme are totally eluci-
dated, better fermentation effects will be achieved 
after conditions are fully attained as possible.

Evaluation of the synergistic effect  
of microbe and enzyme

At present, the evaluation methods of the syn-
ergistic effect of microbe and enzyme in feed can 
be approximately divided into synergistic treatment 
effect evaluation and application effect evaluation. 
The evaluation of synergistic treatment can be 
summarized as the evaluation and determination 
of fermentation indexes, as well as the evaluation 
of specific products of synergistic enzymes (Wang 
et al., 2019). This comprises the evaluation of the 
fermentation index of the cooperative treatment 
with lactic acid bacteria as the main strain, 
including the pH of the substrate, the number of 
viable strains in the substrate and the total titrable 
acidity (Bartkiene et al., 2018; Su et al., 2018). The 
evaluation of the fermentation indexes of synergetic 
treatment with Bacillus as the main fermentation 
strain includes, e.g., the amino acid composition 
of the substrate, and the content of acid-soluble 
protein or specific functional peptide. (Hmidet 
et al., 2019; Orts et al., 2019). The evaluation of 
synergetic treatment indexes with yeast as the 
main strain includes among others yeast quantity 
and oligosaccharide content (Teng et al., 2017). 
In addition, in the indexes of fermentation and 
enzymolysis, conventional nutrients are commonly 
used to evaluate the treatment effect, such as crude 
protein, ether extract, crude fibre, starch and sugar. 
Also, in addition to these mentioned conventional 
nutritional indicators, some new substances in 
barley after the synergistic effect of microbe and 
enzyme were analyzed by using second derivative 
spectrum analysis (Yasar and Tosun, 2018).

The application evaluation is an application of 
the substrate treated by synergism of microbe and 

enzyme in animal feeding experiments. Observing 
and determining growth performance indexes (e.g., 
daily gain, feed intake, feed return), production per-
formance indexes (e.g., egg production, milk pro-
duction, slaughter rate, net meat rate), and physi-
ological and biochemical indexes (e.g., immune 
factor, blood index, intestinal flora, intestinal struc-
ture) (Xiong et al., 2016; Wiseman et al., 2017). 
The synergistic effect of microbe and enzyme was 
evaluated by measuring the digestion and utiliza-
tion of feed before and after synergistic treatment, 
such as apparent digestibility and poultry apparent 
metabolisable energy (Ahmed et al., 2014). For 
ruminants, the evaluation indicators are more re-
lated to the rumen, including the composition of ru-
men volatile fatty acids and rumen gas production 
(Mohd Azlan et al., 2018; Chen et al., 2019). It is 
worth noting that, in recent years, both the feed of 
microbe and enzyme synergism and biological fer-
mentation feed, have achieved excellent application 
effects in aquaculture (Dossou et al., 2019).

Conclusions and prospects
The synergism between microbe and enzyme 

is a complex process of microbial life activity and 
biochemical reaction. Through synergy, many orig-
inal substances are degraded (i.e. anti-nutritional 
factors) and new substances are produced (i.e. 
monosaccharides). In comparison to independent 
processes of fermentation and enzymolysis, such 
a synergistic approach can be more effective. In the 
field of animal production, it can mean the produc-
tion of feed of better quality and with higher nu-
tritional value, and so improved performance and 
health of animals. However, such feed processing 
technology is neither simple nor easy, because, in 
the process of synergy, different microorganisms 
and different types of enzymes may be involved. In 
the future, there is still a lot of research to be con-
ducted on the microbial-enzymatic synergy. As for 
microorganisms and enzymes, the future research 
should focus on their living background, so that the 
expected synergistic effect is achieved, and on the 
selection of the most suitable microorganisms and 
enzymes for synergism. A complete set of process 
parameters should be formulated for different sub-
strates, microorganisms and enzymes combinations, 
including among others strain, source and dosage. 
Moreover, simple and rapid methods for the evalu-
ation of the efficacy of the microbe-enzyme syn-
ergism should be proposed in the experiments on 
animals as the final step.
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